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APPROXIMATE METHOD OF INTEGRATION OF LAMINAR
BOUNDARY LAYER IN INCOMPRESSIBLE FLUID*
By L. G. Loitsianskii

Among all existing methods of the approximate integration of
the differential ecuations of the laminar boundary layer, the most
widely used is the method based on the application of the momentum
equation (reference 1). The accuracy of this method depends on
the more or less successful choice of a one-parameter family of
velocity profiles. Thus, for example, the polynomial of the fourth
degree proposed by Pohlhausen (reference 1) does not give velocity
distributions closely agreeing with actual values in the neighbor-
hood of the separation point, so that in the computations a strong
retardation of the separation is obtained as compared with experi-
mental results (reference 2). The more-accurate methods employed
in recent times (references 2 to 4) assume as a single-parameter
family of profiles the exact solutions of some special class of
flows with given simple velocity distributions on the edge of the
boundary layer (single term raised to a power, linear function).

The transition to the more complicated two- and more-parameter
families of profiles would require, in addition to the momentum
enuation, the employment of other possible equations (for example,
the egquations of energy (reference 5) and others (reference 8)}).

A greater accuracy might also then be expected fcr relatively simple
velocity profiles that satisfy only the fundamental boundary con-
ditions on the surface of the body and on the edge of the boundary
layer. This second approach, however, as far as is known, has not
been considered except for very simple solution for the case of
axial flow past a plate (reference 7).

In the present paper, a solution is given of the problem of
the plane laminar boundary layer in an incompressible gas; the
nethod is based on the use of a system of eguations of successive
moments (including that of zero moment, the momentum eguation) of
the eguation of the boundary layer. Such statement of the problem

"Priblizhennyi Metod Integrircvania Uravnenii Laminarnogo Pogra-
nichnogo Sloia v Neszhimaemom Gaze." Prikladnayas Matematika i Mek-
hanika, USSR, Vol. 13, no. 5, Oct. 1949, p. 513-525.
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leads to a complex system of equations, which, however, is easily
solved for simole supplementary assumptions. The solution obtained
is given in closed form by very simple formulas and is no-less
accurate than the previously mentioned complicated solutions that
are based on the use of special classes of accurate solutions of
the boundary-layer equations. '

1. Derivation of Fundamental System of Successive Moments of
Boundary-Layer Eguation. The well-knovn equations of the stationary
plane laminar boundary layer in the zbsence of compressibility
have the form

du du 82u
uz——+v v - oyt + v o)
ox N Sy
(1.1)

Iy Y
au ov
':—+'\——"=O
ox oY

vhere u(x,y) and v(x,y) are the projections of the velocity at
a section of the boundary layer on the axial and transverse axes of
coordinates x and y, U(x) is a given longitudinal velocity on
the outer boundary U' = dU/dx, and V 1is the kinematic coeffi-
cient of viscosity. When the equation of continuity is applied,
the first of equations (1.1) may be given the more convenient form

p %u-w)
3y?

o

L{u,v) = EL [U(U-Uj] + g% [V(U—v)] + U (U-u) -

oxX

(1.2)
X

The left side of eguation (1.2) is multiplied by y" and
integrated with respect to y from zero to infinity in the case
of an asymptoticaily infinite layer or from zerc to the outer
limit of the layer y = 8(x) for the assumption of a layer of
finite thickness. In either case, the following expression is
obtained:
>, 5

J‘,S )8
L{u,v)y® ay = éi- ’ yu(U-u) dy + yE g— [v(U-uildy +
0 0 oy

0
,5 =5

2
U Y (U-u) ay - v S o (Uw)

2 a4y = 0 (1.3)
0 0 oy
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It is assumed in this eguation and in what follows that, in
view of the very rapid approach of the velocity difference U-u
.%o zero as, y-— o, all integrals with the infinite upper limit have
a finite value. h o ' : '

For k = 0,
o0 2O
d . Tw
— u(U-u) dy + U (U-u) dy = — (1.4)

vhere the magnitude

ou -
Tw = ¢ ";—") (1.5)
Y Jor=0

represents the friction stress on the surface of the body.

Equation (1.4), the well-known impulse or momentum equation,
is readily transformed into its usual form

xR 1% T
w7+ T (24m) = % (1.5)
dx U oU?

>0 $ (1.7)
e By

B* _

1]

For k = 1, a new equation of the 'first moment' is obtained
from equation (1.3)

N
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,6 ,5 »8

4 yu(U-u) dy - v(U-u) dy + U' y(U-u) dy = VU
ax Jo 0 0

(1.8)

and, in general, for k > 2, the equations of successively increas-
ing moments are obtained

o, 0 5 >

I yku(U—u) dy - k yE-ly(g-u) dy + U y&(U-u) dy

o]

s

= k(k~1) v vE-2(y-u) dy (1.9)
6]

In all these eguations, the transverse velocity v(x,y) is
assumed expressed in terms of the axial u(x,y) from the equation
of continuity.

It is now assumed that the family of functions

vw=® (%, 7501, Ags oo e S Ay) (1.10)

satisfies the boundary conditions of the problem with k param-
eters Ay, . . . , M, which are functions of x, such that the

k successive moments of equation (1.3)
0, 5

VFL(w®, v°) ay (1.11)
(¢]

become zero. On the assumption that 1t is permissible to pass to
the limit k--ro, it would then be possible to state that the function

u(x,y) = lim v [X.' g )\1(3{): }\’Z(X)} . . . :}\k(x)]
ke

(1.12)

with parameters 7\l(x), Ao(x), . . ., A {x) satisfying the infinite
system of ecuaticns
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«,&

L%, v°) dy = 0 (k =0, 1,2, . ..)

‘or, what is equivalent, systems (1.4), (1.8), and (1.9) will be an
exact solution of the fundamental system (1.1) for the assumed
boundary conditions.

For this solution, it is merely necessary to recall the known
theorem that a continuous function, 21l successive derivatives of
vhich are equal to zero, is identically equal to zero (reference 8).

The aquestion of the proof of the validity of this theorem is
not considered in the case of an infinite interval or of an inter-
val the boundaries of which are functions of a certain variable
with respect to which the diffcerentiation is effected. A certain
construction, not based it is true on a rigorous proof, of the
solution of the problem will bhe employed with the aid of the suc-
cessive equations of the moments of the basic boundary-lajyer
equation.

2. Choice of Iarameters of Family of Velocity Profiles at Sec-
tions of Boundary Layer. Special Form of Bauations of Mcments.
As is seen from the previcusly discussed considerations, the funda-
mental difficulty lies in the choice of a family of velocity pro-
files (1.10) and the determination cf the parameters )\k of the
family. One of the simplest mwethods of the solution of this prob-
lem is indicated herein.

In the converging part of the toundary layer, the velocity
profiles at various sections of the layer are known to be almost
similar; the velocity profile is deformed mainly in the diffuser
part cf the boundary layer downstream of the point of minimum pres-
sure. The deformation of the profile consists of the appearance
of a point of flexure that arises near the surface of the body and
then moves away from it as the separation point is approached.

The presence of this deformation of the profile n=zar the sur-
face should greatly affect the magnitude T, proporticnal to the
normal derivative of the velocity on the surface of the body; it
will therefore diminish to zero as the point of separation is
approached. The deformation of the profiie will have a smaller
effect on such integral magnitudes as %% =and &*¥% and very
“little effect con magnitudes that contain under the Integral
sizn functicns thet rapldly decreasge ag the surface of the body
is arpproached,
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For the parameters characterizing the effect of the deforma-
tion of the velocity profile, it is netural to assume those magni-
tudes that depend relatively strongly on the deformation of the
velocity profile. With regard to the magnitudes that vary little
with the deformation of the velocity profile, however, it is natural
to assume that they do not depend on the chosen parameters.

For the fundamental parameters determining a change in the
shape of the velocity profiles, which may be called form parameters,
the nondimensional combination of the magnitudes T, , d8* and ©o**
will be employed with the given functions U(x) and U'(x) and
physical constants, namely, the parameters

t **2

o vt )

¢ (a(y/a**) oo T  (2.1)
® J

For the computation of the remsining magnitudes in the equa-
tion of moments according to the assumption, the velocity profile
will be assumed in a section of the boundary layer in a form that

does not depend on the parameters f, {, and H:

i cp(—i—) ~¢ (1) (2.2)

This assumption permits, as will be subsequently seen, obtain-
ing on the basis of very simple computations a sufficiently accurate
solution of the boundary-layer equations for arbitrary distribution
of the velocity on the edge of the layer. The transformation of
equation (1.6) will now be considered.

If the parameter { is introduced, then by equation (2.1),

ds¥* Uryxx v
+ (2+H) =
dx U U o¥*

or )
¥* ¥
jiGD)Jr(zm)f:g
ax

g

[\oR K aet
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It is not difficult to obtain finally
1l U 4af e 1l ugr
-Z-TIT-d-J-C-+ 2+H-2———U12 f=C (2-3)

For the transformation of the left side of equation (1.8)
the first integral can be written by equation (2.2) (n = y/S*‘)
x

np(l=p) dn = HlUZB**z (2.4)

yu(U-u) dy = UZS**E
0 0

where the magnitude H,, equal to
Hy = nP(19) dn (2.5)
0

represents a constant computed by the given function &(n).

In order to compute the following integral, the transverse
is first expressed by ths formula

veloclity v
J n
vV = - éEdy: -—a—Uﬁ** @ an
ox ox
0 0
n i
= - Ura** ®Pdn ~ U E*J‘ Pan - U p** cp_(_jﬂ
dx dx
0 6]
or, when it is noted that
dn 4 [y )__ ¥ _asx 1 dex
dx ~ dx \5** aex2 dx -~ 7 5% Tax
the following expresslion is obtalned:
n n
S 2.3
V = - Urpws ®dn -0 dgx Pdan - n® (2.6)
0 0
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There is thus obtained

> [ o}
U-u) dy = U25%x v - 2)a
(U-u) dy U( 1) ay
0
n
2 asx* [ .
= U“s%* —a—)—c— T]cp— CPdT‘. (1-4)) dT] -
0 : 0
7 "

Uy 5ea? ®an (1<) dn
0 0
or
2 -3 ' =
v(U~u) dy = H,U" 5% dgx - H, sx% 2 (2.7)
(8]
where H, and H, denote the constants
= 1
Hz = n - | 9 an)(1-p) dn
0 0
1 (2.8)
oo
By = pan (1<) dn
0 0

Finally, the last integral in equation (1.8) is transformed into

Q.
y(U-u) dy = HyU s**2 (2.9)
0

where the constant E; 1s equal to

Hy = n(1-p) an (2.10)
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By substituting the integrals cbtained in equation (1.8),

o XSkt

< (@ufen?) - Byutonx + BUUe% 4 HUUsE - uu
' (2.11)

or by replacing 8**2/0 = £/U' by equation (2.1) and carrying out
the tranaformedion,

1 \ar w u" 1
(Hl "2 Ez)E:E = 'ﬁ'[l - (231+E3+H4)f] + F(Hl "2 Hz>f (2.12)

When the new constants are introduced,

1 )
a =
0 -3 B2
SR
- 1
the equation cf the first moment is reduced to the form
af Ut U

-~ = — (a-bf) + — 2.14
dx U ) Ur ( )

The third equation is obtained from the system (1.9) by setting
k = 2.

[» 9

o o -]
4 yeu(U-u)dy - 2 yv{U-u)dy + U yz(U-u)dy = 2V (U-u)dy
dx
0 0 0 0
There is obtalned, as before,
yeu(U-u)dy = HUPE*S (2.18)

0
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wnere the constant He 18 equal to
0B

i - | ne(1-)dn (2.17)

Further, by analogy with equation (2.7)

2l
yv(U-u)dy = Hgulowe? Qgif - B UUpes (2.18)
0
where
n A
Hg = | n\no-| ¢dn] (1-p)dn
0 0
- (2.19)
: 1
Hy = pdn| (1-g)dn
0 0 J

The last integral on the left side of equation (2.15) is equal
to

[+ 4

72 (U-u)dy = HqU x> Hg = nz(lﬂw)dn (2.20)
0 o

The integral in equation (2.15) on the right reduces toc the
unknown parameter H

o (=]

u 5*
~uldvy = U 1 - =) dy = Ud** . - % .
(U-u)dy ( U) y o = U B (2.21)

0
By substituting the expressions ottained for the integrals in

the second-moment equation (2.15), there is obtained, after simple
transformations,

1 df U' l 1 Un
z (3H5-2H6) Ix = -ﬁ[ - (H5+H7+§H8) f] + y (SBS-ZHB) T f

(2.22)
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The system of three equations (2.3), (2.14), and (2.22) has
thus been established for determining tke three unknown magnitudes T,
¢, and  H.  The solution of this system is now consldered.

3, Dotermination of the Constants H;. Approximate Formulas

for Parameters f, {, and H. For the determination of the numeri-
cal values of the constants Hy, Hp, . . ., Hg, the form of the

function @ (n) must be known, The simplest velocity profile in
the theory of the asymptotic boundary layer is the velocity profile
in the sectionas of the boundary layer of the flow past a plate.

Tne function ¢(n) for this case can easily be determined from
the generally known table of values of the velocity ratio u/U as
a function of § = ya/U/vx/2.

Superfluous ccmputations may be avoided by noting that the con-
2tants to be computed are comnected with one ancther by certain
simple relations.

First of all, from equations (2.3) and (2.14),

== a +<? +H - %) f (3.1)

N

3y setting f = 0, there is obtalned a = 2{,, where (g,

denotes the magnitude { ccmputed for the plate (U" = 0, £ = 0).
From ths definition of { and from ths known relations for the
plate,

S W¥
30 T

O__ _wo _ , 0.664 \/j"é 0.352 , fupl® _ 0.664% = 0.4408
U u U U I b'd

(3.2)

9 = 2

Further, by comparing with one anothsr the magnitudes H;, Hz,
Hz, and Hy,

Hy = Hy - Hy (3.3)

2
o oc [« 1]
1
H, - Hs = n - | pan} (1-p)an = = (1-@)dn| =35 By?
o 2 lJo

(3.4)

oo
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where Hy 1s the value of H for f = O, that is, the ratio &%/5%*
for a plate is equal, as is known, to

It is then sasy to obtain the value of b by equations (2.13),
(3.3), and (3.4).

2Hy+Hz+i
b = AT o (2H)4Hp-Hp+Hp-Hp+ %.HGZ)

1
= a (4H;-2H,+ %HOZ) =4 + % Hoz = 5.48* 5,5 (3.,5)

When df/dx 4is eliminated from equations (2.22) and (2.14),

3Hs-2Hg
H = (Hg+H,+ %Hs) f+ 1 [l - (2Hy+Hz+H,) f]
4(H -2 Hp)
1 a b
= (Hg+Hp+ 3Hg) £ + 7 (3Hg-2Hg) (} -2 f) (3.6)
By setting f = O,
L (zH.-2H,) = B0 _2.59 g a9 (3.7)
4 STN8 T e T 0.44 T .

The only magnltude that must be computed again from the table
of values @(n) 1is the magnitude Hg + Hy + HS/Z. Numerical inte-

gration gives

1
Hg + Hy + 5 Hg = 24.73 (3.8)

after which there is immediately obtalned

BE=2,59~7.,55°f (3.9)
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Substituting this expression for H in equation (3.1l) gives

{=0.22 + 1.85 £ - 7,55 £° (3.10)

‘Finally, integrating the simple linear equation (2.14) gives
X

£ | vhedag - L5 [ vty (3.11)
" do T do

Equations (3.9), (3.10) and (3.11) give the required solution.

The simple, approximate solution Just obtained 1s now compared
with the actual values. The almost complete agreement of the val-
ues of f obtained with the first approximation (which is practic-
ally the only one that is applied) of the preceding works (refer-
ences 2 and 3) will be noted. The closed-form relation between ¢
and f likewise differs little from the corresponding tabulated
functions 1n the references clted,

For comparison, the curves {((f) and H(f) obtalned accord-
ing to the formulas of reference 2 and by the formulas (3,10) and
(3.9) are shown in figure 1. The results obtained will also be
compared with the formulas of Wright and Bailey (reference 9). An
approximate method of computation of the laminar boundary layer 1is

proposed therein in which the equation of momentum (1.6) is employed

with T, and B&%* gubstituted by the formulas for the flow past
a plate, By expressing the results of Wright and Bailey in the
parameters of the present report, the analogs of equations (3.9),
(3.10), and (3.11) are obtained.

H= 2,59
{ =0.22 + 4,09 T (3.12)
£ = 0,44 L%

U

It is easily seen that this formula for £ corresponds to
equation (3.11) for b = 1. The straight lines for { and H
shown dotted In figure 1 Indlicate the considerable deviation of
the formulas of Wright and Bailey from more accurate formulas
presented herein,

13
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For confirmation, the particular case of the laminar boundary
layer corresponding to the so-called single-slope veloclty distri-
bution at the outer boundary of the layer U = 1-x will be con-
sidered, This case has been theoretlcally soclved and an exact
solution in a tabulated form (reference 10) 1s available., The
results of the recomputation of these accurate solutions in the
form assumed by the parameters-are given 1In figure 2, Alsoc shown
for comparison are the corresponding curves obtained by the pro-
posed approximate method and by the method of Wright and Bailey.

4, Possible Methods of Rendering the Foregoing Solution More
Accurate, The method described in the preceding sections was based
on the assumption of a slight dependence of Hj; on the form param-

eters f, {, and H, This assumption may be eliminated and the
method rendered more accurate, although it thereby becomes con-
siderably more complicated,

In order to discuss the possible generalizations of the method,
the complete system of equations, for example, for the three-
parameter case 1s written out; that is, a three-parameter family
of velocity profiles is assumed in place of equation (2.2).

g =o; £, ¢ H) (n = a%*) (4.1)

By substituting this veloclity profile In the system of the
three equations of successive moments (1.6), (1.8) and (2.15),
there 1s obtained a system of three ordinary nonlinear differential
equations that determine the magnitudes of the parameters f, (,
and H:

1 U d4af 1 uu”
E_—x+(2"z'U.2 f + Hf =¢ (4.2)

L1 aHl) ]df By  at aH1) am
lf[l ~§H?‘ +(Kl+§f-_“fa+(K2+ac fdx+K3+§H_ fa‘;

U’ u" 1
= 5 [1 - (2H1+H3+H4)f] +gv (B -3 Hp) (4.3)
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OH, SH
1 1 9 af 1 ©is5
[Z (385-28g) + (K4+§ a-f‘> f] ax +(K5+ 2 ?) el

1
%y— (3H5-2Hg) £ (4.4)

in which, in addition to the previous notations, the following
deflinitions are chosen:

oo .
fﬂ \
og
K = dn} (1-@)d
1 n P)én
o\Jo of
o

L]

> (4.5)

=]
N
i
ﬁ
e |
Q
© 3
e
g
-
1
&
Q
=

I o o
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It 1s noted that, in the system of equations (4.2), (4.3),
and (4.4), Hi and Ki are not constant magnitudes , as pre-
viously, but known functions of the form parameters £, { and H;
the form of these functions depends on the chosen family of
profiles (4.1).

The equations (2.3), (2.14), and (2.22) earlier employed evi-
dently represent a particular case of the system (4.2), (4.3), and
(4.4) on the assumption that the family of velocity profiles at
the different sections of the boundary layer has the form of equa-
tion (2.2); in other words, these profiles are similar to one
another. All values of Ky are of course then equal to zero and

Hy 1s constant,
The proposed method may be rendered considerably more accurate

by assuming, for example, the single-parameter family of velocity
profiles

u .
7[']- = CP(T], f) (406)
Then
OH oH OoH O,
1 1 5 5
K = — = K - — K = —— K = —— 0
273t 3T = STy T8 T w

and the system of equations (4.2), (4.3) and (4.4) is transformed
as follows:

1 U af 1 UU
E Ut dx +< - 2 U'Z) f+Hf —; (4.7)
oH
1 1\.lar U
[Hl - S B (K.l+ _‘IT = [ - (2H;+Hz+H, )f] +

v ( —% ) (4.8)
H
(3}15-2116) +( %——f—s)f] %ﬁ

ur | 1 1U"
U g Ho+ X Ha)f| + & 3o (3Hc-2H)f 4,
= _H (H5+ 7+ > 8) :l + 0 (38g 6) (4.9)
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Equation (4.8) can be given the form

1
ar U 1 - (2E)4Hm4E,)f Lo H -3 H .
dx ~ U 1 ik 1
By -5 Hp + (K, +0H; fof)f CHy- 5 Hp o+ (K,+0H,/Of)f
(4.10)

which represents a generalization of equation (2,12) where equa-
tion (4.10) approximates equation (2.12) because of the small change
in Hy with change in the parameter f{ and the smallness of the
magnitude (K;+0H,/Of)f in comparison with H; - Hp/2, This gen-

eralization permits obteining the integral of equation (4.10) by
introducing a correction to the solution of equation (2.12).

By dividing both sides of equation (4.2) by the corresponding
sides of equation (4.8) and thus eliminating df/dx, there is
obtained

= (HS+H7+-% Hé)f +

i (3H ~-2Hg ) K,
57456/ * ( 4+'3Hif ) [; - (2H1+H3+H4)f] +

1

OH
. L\ 7 (sHs-2Hg) + (K4-+% ) I
2 2 1 OH1 4
Ut Hy - = Hs + [Kq + f
1 -5 1Y 55

(4.11)

By simller conslderations on the smallness of the magnitudes
(Kg+1/2 OHg/Of)f 1in comparison with (3Hg-2Hg)/4 and of

(K1+0H /Of)f in comparison with H; - Hy/2 and on the slight
variability of Hj, 1t may be concluded that the value of H

determined by equation (4.11) is an improvement in the accuracy of
the approximate value of H according to equation (3.6).

It may be remarked that in this more accurate approximation
there 1s no longer that universal relation between the parameters H
and f, independent of the form of the function U(x), character-
izing the given particular problem, The presence in equation (4.11)

17
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of a second term with the factor UU"/U'2 shows that 1n the more
accurate approximation the magnitude H in a given section of the
layer depends not only on the value of the form parameter f in
this section, as was the case in the rougher approximation of equa-
tion (3.5) or (3.9), but also on the value of the magnitude UU"/U'z
in the section considered that 1s, on the values of the func-

tion U(x) and its first " two derivatives. It is readily observed
that the second term on the right side of equation (4.11) will

give a small correction to the solution (3.8) for relatively small
values of the magnitude UU''/U'2,

The same considerations hold for the expression for {, which
mey be obtained by substituting d4f/dx from equation (4 lO) and
H from equation (4.11) into equation (4.7):

1o (@EEs)E 11 1 (s s-2Hg)f 4K, + L Is) ¢2|,
1 aﬂl 2 4 2 of
- = f
Hl 2 Hz + (K1+'_—)

1 2
2f + (Hg+H7+ 5 Hg)f -

aH1) [1 f] ( 1 aHs) 1 ) 3
vy (K1+8f f ~2- + (3H5-2H6) -4— - .K4 + E S;F— (Hl-—z- Hz f

U Hl-EHZ+(Kl+a—f—)f

(4.12)

As is seen, in this new approximation, in contrast to the pre-
ceding one, there 1s no universal relation between ( and f. The
presence of s term with the factor UU"/U'Z makes the magnitude ({
depend not only on the value of the parameter f but also on the
form of the function U(x) and its first two derivatives in the
given section of the boundary layer.

It is of interest to remark that in this approximation the
position of the point of separatlion of the boundary layer, that is,
the value of x = xg for which { 1s equal to zero, will no

longer be determined by some universal value of the form param-
eter fg, but in each Individual case the value of x = xg must
be determined for which the right side of equation (4.12) becoues
28Yro0.
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By assuming a particular form of a family of velocity profiles
(4.8), employing, for example, the sets of velocity profiles
applied in the previous investigations (references 2 to 4), the
values of the functions H; and K; are determined; the form

parameters f, ¢, and  H, that 1s, the thickness of the momentum

loss ®*¥, the friction stress T, @nd the displacement thick-

ness 5% may then be found without difficulty. The solution

of equation (4.10) and the determination of H and { by equa-
tions (4.11) and (4.12) offers no particular difficulty. Further
improvement in the accuracy requiring the solution of a system of
the type of equations (4.2), (4.3) and (4.4) is hardly of practical
interest.

In the previous discussion, the scheme of the asymptotically
infinite boundary layer was used, but similar equations may be
obtained also for the case where the boundary layer is assumed to
be of finite thickness.

The method here proposed may evidently also be applied to the
case of the thermal boundary layer. The characteristic feature of
the method for the cases of both the dynamic and the thermal bound-

ary layer lies in the fact that the friction stress and the quantity

of heat given off by a unit area of the body are expressed in inte-
gral form and not in terms of the derivatives of functions that
represent the approximate velocity and temperature distributions

in the sections of the boundary layer.

Translated by S. Reiss
National Advisory Committee
for Aeronautics.
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